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Thermodynamics of a Model wih Interacting Annealed 
Bond Impurities on the Bethe Lattice 
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A magnetic model is considered consisting of annealed, mutually repelling 
ferromagnetic bond impurities in an antiferromagnetic host lattice. Using 
recurrence relation techniques, the grand-canonical version of this model is 
solved on the three-coordinated Bethe lattice. A generic phase diagram is 
obtained containing, apart from the usual ferro- and antiferromagnetic regimes, 
two distinct incommensurate phases as well as a period-four modulated phase. 
Evidence is obtained that in one of the two incommensurate phases impurity 
pairing occurs. 
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1. I N T R O D U C T I O N  

Recently several theories of high-temperature superconductivity of planar 
CuO2 have been proposed on the basis of magnetic frustration effects. (1'2) 
In these theories oxygen impurities occupy sites between the copper atoms 
in certain planes of the host lattice. For low concentrations the electronic 
holes created by these impurities can be taken to be localized. Their effect 
is to change the initially antiferromagnetic exchange interactions between 
the host spins into ferromagnetic ones. The resultant frustration effects are 
then thought to cause a pairing interaction between the holes, thus leading 
to a possible mechanism for superconductivity. The aim of this paper is to 
study, on a classical level, the types of magnetic effects associated with such 
a model. To this end we will introduce an, albeit rather simplified, version 
of the above model containing, however, all the relevant ingredients, 
including a repulsive interaction between the impurities in order to model 
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the Coulomb repulsion due to their charges. This model will be introduced 
in Section 2. In order to obtain information about the behavior of our 
model we will need to resort to soe sort of approximation scheme. We 
choose to solve the model on a Bethe lattice using recurrence relation 
techniques that are especially suited to describing various forms of complex 
spatial ordering. This approach is discussed in Section 3. We go on to 
study the phase diagram of the system as well as the properties of the 
various relevant thermodynamic quantities. The results are discussed in 
Section 4. We close with a short discussion in Section 5. 

2. DEFINIT ION OF THE M O D E L  

We start with a host system consisting of a lattice of Ising spins with 
a nearest neighbor antiferromagnetic coupling of strength J. Now consider 
introducing Ising spins as impurities on the bonds of the lattice that interact 
ferromagnetically with the host spins on the adjoining vertices through a 
coupling of strength - J ' ,  but do not interact with other impurities, a 
model first studied by de'Bell. (3) Choosing J'>~ J assigns the lowest energy 
to the state of a single bond where an impurity spin is present and all spins 
along the bond are aligned. Note that the presence and the state of an 
impurity are irrelevant when the vertex spins have opposite values. The 
state where none of the interactions along the bond are satisfied, i.e., with 
the vertex spins aligned oppositely to the impurity spin, will, given the 
condition on the relevant strengths, have a much larger energy than any of 
the other configurations. This leads us to propose the following simplification 
of the above: discard the highest energy bond configuration and disregard 
the higher multiplicity of the configurations with opposite values of the 
vertex spins. The result is model where only the presence of an impurity is 
relevant in that it changes the antiferromagnetic interaction between the 
vertex spins into a ferromagnetic one. This procedure is illustrated in Fig. 1. 
The energy of a bond configuration in the resulting model is given by 

OX~bond = --J(o~ij--  1)aiGj--Jo~i j  , o~=J'/J (1) 

where ~a is an occupation variable taking the values 0 and 1 and the a's 
are the Ising variables of the vertex spins. This effective spin-spin inter- 
action is closely related to the one proposed by Kasai and Syozi (4) as the 
so-called excluded double-bond model. In order to take into account a 
mutual repulsion of the impurities, mimicking the effect of the Coulomb 
repulsion that is present when charged impurities are introduced into a real 
system, we add the following term to the Hamiltonian for each nearest- 
neighbor pair of bonds: 

~ i m p - i m p  = pJeijejk (2) 
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where p ~> 0 is a dimensionless parameter measuring the strength of the 
impurity repulsion relative to the spin-spin interaction. In order to control 
the average concentration of impurities present we will couple the system 
to a bath of impurities at a fixed chemical potential. We therefore add 
single-impurity energy terms to the Hamiltonian of the form 

gb.th = - -J ;e0  (3) 

which defines our dimensionless chemical potential/~. Before proceeding we 
will transform the impurity occupation variable ~ to an Ising-type variable 

= �89 (~ + 1 ) which will simplify some of the later algebra. Omitting irrelevant 
constant terms, we obtain the bond configuration energy in the form 

~bond = - - J  ( A - -  1 ) ( ~  i (T  j - -  J A z  o.ff i a  j - J A z  ij (4) 

the impurity-impurity interaction by 

~iimp- imp = JR(zoLk + ro + Lk) (5) 

and the interaction with the bath by 

~bath ---~ --JMzij (6) 

I (2) 
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Fig. l. Energy levels of bond configurations. Left: the original de'Bell model; right: our 
simplified version. A black square denotes occupancy by an impurity. The bracketed numbers 
are degeneracies. 
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where we have introduced the redefined parameters A = !c~2 , R =  �88 and 
M=�89 

We would like to point out that the model proposed here is new in 
the sense that it combines both the influence of the bond impurities on the 
magnetic order of the host material as well as the interactions between the 
impurities themselves. Several models have been proposed ~5'6) in relation to 
high-To superconductivity that consider the influence on the magnetic 
order due to the presence of oxygen impurities that change the sign of the 
host spin-spin interaction, but these do not take into account the repulsive 
interactions between the impurities. On the other hand, there are lattice gas 
Ising models proposed for the ordering of the oxygen atoms in the basal 
planes of superconductors (see the review by Szpilka et al. <7) and references 
therein), but these do not deal with the coupling to the magnetic degrees 
of freedom. 

3. SOLUTION OF THE MODEL ON A BETHE LATTICE 

There are at present only few techniques available for studying 
magnetic systems of the type described in the previous section. A 
fundamental difficulty is the fact that the interactions introduce an element 
of frustration in the system: The realization of the lowest bond-energy state 
comprised of fully decorated bonds with ferromagnetically aligned spins 
[see Eq. (1)] is incompatible with the repulsive interimpurity interaction (2) 
that disfavors impurity clustering. The result is that these systems can 
develop spatially modulated phases of varying degrees of complexity. 
A model of this type that has been extensively studied is the ANNNI 
model (s) In this case even the application of standard mean-field theory on 
cubic lattices becomes an involved problem. (9) An alternative approach 
toward this type of model is to study them on the Bethe lattice. (1~12) A 
major advantage of this approach is that it yields recursive equations for 
the local thermodynamic quantities which allow, in principle, a complete 
analysis of the "spatial" structures that appear. Of course by considering 
only the simple branching topology of the Bethe lattice one misses out on 
geometry-related effects relevant to real lattices. As such the results of this 
approach should be considered as indicative for the behavior on real 
lattices. 

We will consider the model as defined in Section 2 on a Bethe lattice 
with coordination number z = 3. Given the fact that on a Bethe lattice, in 
contrast to a real lattice, any bond impinging on a single site has to be 
considered nearest neighbor to any of the other bonds connected to the 
same site, the impurity-impurity interaction as defined in (2) becomes 
effectively isotropic. We therefore assume that the dependence of the 



Annealed Bond Impurit ies on Bethe Lattice 427 

overall features of the system on the coordination number is slight. This 
justifies our choice of the lowest relevant coordination number, which 
considerably simplifies the analytical treatment necessary. 

Our treatment of the problem is a generalization of an idea originally 
due to Morita. (13) Similar and equivalent techniques are described in 
refs. 14 and 15. Consider an isometric Cayley tree of radius N?, which is the 
distance from he central site to any site on its surface, with the distance 
between two sites being defined as the minimum number of bonds one 
needs to traverse to reach the one site starting from the other. We 
moreover assume that homogeneous boundary conditions are enforced at 
the surface of the tree. One now defines a branch N'i;j of the tree by selecting 
a site i and one of the bonds @')  connected to it and considering the set 
of all sites connected to i by shortest-distance paths that pass through the 
bond @')  (see Fig. 2). Fixing the value of the spin ai on the selected site 
and the value of the impurity variable T~ on the selected bond--we will 
refer to this combination of spin site plus impurity site as the stem of the 
branch--one then defines the branch partition sum ~i;j(ai, ~u) obtained by 
summing the Boltzmann weight of the selected branch over all degrees of 
freedom in the branch apart from the two fixed at its stem, i.e., 

~i;y(ai, v,Y)= ~ 1-I exp[--fld~bo-d(a~, a,~, 72nm)'] 
O-k, 7;kl , in ~f3i: j "  [ ( n r n  ) 

ai ,  "rlj f i x e d  f 

• H exp[--fl~iimp-irnp('Cnm,'Eml)] I-[ exp[--fl~bath(~nm)] 
< . . . .  ~> < " >  (7 )  

/ /  \\\\ / /  x~x\ / 

\k  /1 

\ / 

Fig. 2. The three-coordinated Bethe lattice. The solid lines are the bonds connecting the 
spins, which are located on the circles. The sites which can be occupied by impurities are 
shown as squares on the bonds. The dashed lines represent the interimpurity interaction. The 
thicker bonds define a branch of the tree which has the black spin and impurity site as its 
stem. 
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This summation can be recursively evaluated, since the summand splits 
into independent factors along the bonds leading out from the second site 
j, the summations over these individual factors being identical in structure 
to (7). This procedure is symbolically depicted in Fig. 3. Explicitly this 
recursion is given by 

= exp[K(A + M -  2R)z] 

x ~ exp{K[(A-1)aa'+A'caa'-R(rz'+z'r"+z"c"+2z'+Zz")]} 
f f ' ,  T ' ,  T " 

• (~ (8) 

where we have introduced the dimensionless inverse temperature K =  fiJ. It 
is convenient introduce the following parametrization for the Ys: 

~(a, r )=q{1  + x a +  yr + zaz} (9) 

where, in order to ensure positivity, we have q >~ 0 and (x, y, z) considered 
as a point in three-space must lie in the tetrahedron with vertices (1, 1, 1), 
(1, - 1 ,  - 1 ) ,  ( - 1 ,  1, -1 ) ,  and ( - 1 ,  - 1 ,  1). Insertion into (8) leads to 

Qj~j, (o'S) Qj ;j,, (o','~") 

\\\\\\\\ \/~13/1///1/1 

1 Qtl j (o,'Q 
Fig. 3. Symbolic representation of the recursion relation. The new branch partition sum is 
obtained by forming the product of all Boltzmann weights associated with the diagram and 
the two incoming branch sums and summing over the degrees of freedom in the filled-in circle 
and squares. 
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a closed set of coupled recursion equations involving only the variables 
(x, y, z): 

x = X((x' ,  y', z'), (x", y", z")) 

y = Y ( ( x ' , / ,  z'), (x", y", z")) (10) 

z = Z(x ' ,  y', z'), (x", y", z")) 

where, for reasons of notational economy, we have dropped the site labels 
identifying the stems of the branches involved. We refer the reader to 
Appendix A for the explicit expressions of the functions X, Y, and Z, which 
are ratios of second-degree polynomials of their variables. To make contact 
with local thermodynamic variables we note that the configuration 
probability of an elementary triangle cluster, consisting of a given spin and 
the three impurity sites on the bonds impinging on this spin, can be 
expressed in terms of the branch partition functions of the three branches 
that have the selected spin as their root. Explicitly, we have 

Pi, j,j,,j,,(r "C, "c', "f ') 

1 
= ~ e x p [  - -KR(zz '  + zz" + z 'r"  + 2z + 2z' + 2r")] 

)'( "~i;j( a, "~) ~ ((~' Tr ~i;j" ((T, "E n) (11 ) 

where N is chosen to normalize the probability. The product structure with 
respect to the ~'s, which reflects the branching nature of the lattice, ensures 
that we can absorb the multiplicative factors q, which appear in the 
parametrization (9) and are left undetermined by the recursion equations 
(10), into the normalization constant N, enabling the probability to be 
expressed solely in terms of the variables (x, y, z). We refer the reader to 
Appendix B for the relevant expressions. In order to obtain the so-called 
interior properties of the system, i.e., the properties sufficiently far away 
from the surface so that transient effects due to the boundary conditions 
have disappeared, we adopt the following procedure. First we iterate (10) 
starting from the boundary and moving deeper into the the tree. This 
iteration can be labeled by an index denoting the distance of the root spin 
to the surface. Since we assume homogeneous boundary conditions, we do 
not need to differentiate between the contributions of the two ingoing 
branches, i.e., we have an iteration of the form 

Xl = ~(Xl-- 1, Yl-- 1, Z]_ 1) 

Y l = t l ( X l - 1 ,  Yl 1, Zl 1) (12) 

Zl = ~(Xl-- i '  Yl 1' ZI-- 1 ) 
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where I = 1, 2,... and ((x, y, z) = X((x, y, z), (x, y, z)), etc. [see (A4)]. This 
process is repeated K times, with K chosen such that transient effects have 
died out and all iterations fall on an attractor of the recurrence equations. 
We then continue for another L steps, storing the results (XK+k, YK+k, 
ZK+k)~=I.2.....L. The site reached after these L steps is then arbitrarily 
chosen to be the central site of the tree. Applying Eqs. (10), we can then 
calculate the ~'s of the branches that have their stems pointing in the 
reverse direction, i.e., toward the surface of the tree. Denoting by (2,)7, 5) 
the parametrization of these outgoing contributions, we have the following 
recursion: 

~l= X((x,, y,, z3, (~,+ 1, Y,+I, 5,+ 1)) 

~,= g((x,, y,, z,), (.~,+ ,, y,+ ,, 5,+ 1)) (13) 

5l=Z((Xl, Yl, zl), (-~1+ 1, )~l+1, 5/+1)) 

I = K + L , K + L - 1  ..... K + I  

with boundary conditions 

~?x+L+l= XK+L, )~K+L+I = yK+L, ZK+L+I=ZK+L (14) 

where I again labels the level of the tree counted from the surface and the 
(x,, y,, z,) are the previously stored parameters of the ingoing contribu- 
tions. Simultaneously at each step we can calculate several thermodynamic 
quantities of interest, such as the magnetization, the impurity concentration, 
and various impurity-pair configuration probabilities, using our result for 
the elementary triangle probability (11). 

4. RESULTS 

In this section we discuss some of the results we obtained on the 
system described in Section 2, using the methods outlined in Section 3. 
Unless stated otherwise, the results pertain to the case where the parameter 
governing the ratio of the ferro- to antiferromagnetic coupling has the 
value c~ = 2.0 and the parameter defining the strength of the impurity- 
impurity repulsion has the value p = 1.5. Note that this value of the 
parameter c~ corresponds to the case where the ferromagnetic coupling 
induced by the presence of an impurity is equal in magnitude to the 
strength of the host antiferromagnetic coupling. In the absence of the 
repulsive interaction between the impurities (p=0)  this system would 
therefore possess a symmetry with respect to the interchange of the average 
concentration of impurities with the average concentration of nonoccupied 
bonds. Any observed asymmetries between the low-impurity-concentration 
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regime and the high-impurity-concentration regie are therefore due to the 
impurity-impurity repulsion. 

In Fig. 4 we present the chemical potential versus temperature ( T =  1/K) 
phase diagram of the system for those temperatures which were accessible 
using our method. We observed that there is a chemical-potential-dependent 
temperature below which the recurrence relations (12) show numerical 
instabilities due to the fact that both the numerator and the denominator 
of the algebraic functions defining the recurrence become small. This effect 
is probably the sympton of a nonanalytic dependence of the average impurity 
concentration as a function of the chemical potential at zero temperature. 
A full analysis of this behavior is possible only for the simpler case with 
noninteracting impurities (p =0) ,  (~6~ so that in this work we are forced to 
accept this limitation on the determination of the low-temperature region 
of the phase diagram. 

Apart from the expected antiferromagnetic phase (AF) for small 
(corresponding to a low impurity concentration) and ferromagnetic (F) 
phase for high/~ (high impurity concentration) we find an "island" in the 
phase diagram consisting of two incommensurate phases, which we denote 
by I and I', separated by a modulated phase M. We have also performed 
a linear stability analysis of the recursion equations in order to obtain the 
location of the paramagnetic phase boundaries directly. This shows that 
the apparent kink in the meeting point of the P- I  and P- I '  lines in the 
P - M - I - I '  multicritical point is an artifact of the scale: the two lines 

15 

P 

10 

0 5 -  

-~o -4.0 -~io " o;  2o " . ;  go 

Fig. 4. The chemical potential versus temperature phase diagram for our model with ct = 2 
and p= 1.5. P: paramagnetic phase. AF: antiferromagnetic phase. I, I': Incommensurate 
phases. M: period-four modulated phase. The black squares denote the predicted location of 
the zero-temperature transitions that destabilize the AF and F phases, respectively, 
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smoothly merge together with zero slope with respect to # at the multicritical 
point. Unfortunately, the linear stability analysis is plagued by the same 
numerical problems as the recursion relations themselves, so it does not 
help in obtaining more information about the phase boundaries in the 
low-temperature "inaccesible" region. 

The nature of the various phases can be identified by studying phase 
plots of the variables obtained in the ingoing iteration. In Fig. 5 we present 
some of these plots for the "magnetic" variable xt, clearly showing the 
nature of the attractor in each case. The modulated phase has a magnetic 
signature of type (+  + - - ) ,  while the incommensurate phases, locally 
having this same pattern, show nonperiodic behavior due to random 
isolated deviations from this pattern. 

As far as we could determine, the "island" in the phase diagram is 
always separated from the flanking ferro- and antiferromagnetic phases by 
a narrow paramagnetic (P) region. We conjecture that this paramagnetic 
gap remains finite at any finite temperature, vanishing exactly at T= 0. In 
fact we speculate that the location of the points on the zero-temperature 
axis, where, at constant chemical potential, the antiferromagnetic phase 
with zero impurity concentration and the ferromagnetic phase with unit 
impurity concentration transform into a more complex ground-state phase, 
can be determined by the following argument. 

(i) Consider a perfect antiferromagnetic ground state without 
impurities. Flip a single spin, creating three ferromagnetically ordered 
bonds, and add three impurities to satisfy the spin-spin interaction along 
these bonds. If the grand canonical weight of the new configuration is equal 
to the old one, the AF ground state becomes instable to isolated disturban- 
ces of the above type. Using the definitions of the weights (4)-(6), one 
finds that the above criterion determines the critical chemical potential 

oo 

lO 

/~*v = 2 -  2c~ + p (15) 

�9 t �9 . . . . . . .  1- . . . . . . .  o " o.o_1 o 

[ 

-1D oo lp lO oo 1D -10 o.o lp 

(a} {b)  (C)  

Fig. 5. Phase plots of the recursion equations for the "magnetic" variable x. Horizontal axis: 
x l. Vertical axis: xt+ 1. (a) The incommensurate phase I, (b) the modulated phase M, (c) the 
incommensurate phase I'. 
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(ii) Completely analogous to the above, we consider a fully 
decorated, perfectly ordered ferromagnetic state and flip a single spin while 
removing three impurities. Again equalizing the respective grand canonical 
weights, we obtain a second critical chemical potential 

#]v = 2 - 2c~ + 3p (16) 

In the case p = 0 the two critical values coincide and the result agrees with 
the exact analysis of ref. 16. Looking at the phase diagram in Fig. 4, where 
we have marked these critical values on the T =  0 axis, one sees that #*v 
correlates quite well to the data obtained. The verdict is still out on [~*, 
there being only a slight indication that the P -F  phase boundary bends 
inward toward lower values of/~ at the lowest temperatures we were able 
to study. 

Since, from a physical point of view, we are more interested in the 
behavior of the system at fixed average impurity concentration, we have 
studied the dependence of this quantity on the chemical potential at 
constant temperature. We define the average concentration as determined 
by our calculations as 

'L 
fi=-~ nx+g (17) 

i = 1  

where nl is the impurity concentration on level l from the surface as 
determined from (B9), and K and L were defined in Section 3. The length 
of our "measurement" interval was typically chosen to be L = 1000, large 
enough to obtain a good averaging in the case of the incommensurate 
phases I and I' and trivially correct for the remaining phases that are 
periodic with period lengths one (P and F), two (AF), and four (M), 
respectively. In Fig. 6 we show a typical low-temperature graph ( T =  0.25) 
of the average impurity concentration. We observe that the fi increases 
strictly monotically with increasing #, with the exception of the modulated 
phase M, wherein it remains constant and equal to r~ = 0.5 independently 
of the temperature. Figure 7 presents the relevant part of the graph at a 
much higher resolution for the case T =  0.5, clearly displaying this plateau 
of constant average concentration. Thermodynamically speaking, the 
presence of this flat part in the chemical potential versus average concen- 
tration curve means that at constant impurity concentration one cannot 
observe the modulated phase M, which apparently is an artifact of the 
coupling with the impurity bath. Instead one would observe, on increasing 
the impurity concentration of the system, a direct transition between the 
two incommensurate phases I and I'. This behavior of the system is 



434 Mu lde r  e t  ai. 

1.O- 

QS-  

O 6 -  

0 .4 -  

0 .2 -  

/ 

I 
I 
I 

' i -2 .0  0 0  

0 .0  

-4 .0  2 .0  4.0 6 0  8 .0  

Ix �9 

Fig. 6. The average impurity density n as a function of the chemical potential for T =  0.25. 

another interesting example of the nonequivalence of ensembles that seems 
to occur in the presence of competing annealed interactions. (16) A final 
close-up at T =  0.25 of the #-vi isotherm in the region around the AF-P- I  
transition in Fig. 8 shows that the average concentration shows a jump 
discontinuity at the antiferromagnetic to paramagnetic transition (the 
same happens at the high-concentration paramagnetic to ferromagnetic 
transition). This would indicate that at the fixed average impurity concer/- 
tration there might exist intermediate concentration phases unobservable in 
this grand-canonical approach. To answer these questions one would need 
to study an appropriate thermodynamic potential, which is not straight- 
forward to construct from our essentially local analysis of the lattice 
properties. 

As stated in the introduction, we are interested in examining the 
possibility of impurity pairing. We therefore take a closer look at the 
incommensurate phase I. We restrict ourselves to this case, since we have 
established that in the other incommensurate phase I' the average impurity 
density vi is larger than 1/2, while on our lattice a close-packed configuration 
of isolated impurity pairs would have an average density ~cp -- 1/2. We thus 
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Fig. 7. Closeup of the plateau of the average impurity density at T=0.5 in the modulated 
phase M. Note the expanded scale of the density (units are 10-1). The arrows denote the 
location of the phase transition as determined from the recursion equations. 
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The jump discontinuity of the average impurity density at the AF to P boundary 
(T=  0.25)�9 The arrows locate the AF P and the P-I  transitions, respectively�9 
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expect isolated impurity pairs, if any, to appear in I. From the elementary 
triangle probability (11) we can compute the probabilities of several 
impurity configurations on this triangle. Averaging these results over our 
measurement interval--the M shells of the tree closest to the c e n t e ~ w e  
can obtain some partial information on the pairing behavior. 

Note that each elementary triangle has a unique orientation with 
respect to the tree, two of its impurity vertices "pointing" toward the 
surface and one toward the center. This is of interest since, as we shall see, 
in the incommensurate phases the threefold symmetry of the various 
configurations on the triangle is broken. Of course the geometry of our 
system consisting of an isometric tree with boundary constrains this 
symmetry breaking to have a twofold axis along the direction orthogonal 
to the successive shells of the tree, but this entails no loss of generality, 
since on the infinite tree without boundaries we expect a phase with broken 
occupation symmetry to be threefold degenerate. Our method of solving for 
the interior properties of the tree simply selects one of these three 
possibilities. Likewise we do not expect the assumption of the homogeneity 
of the boundary conditions to play a role in the determination of the phase 
behavior, since at every level of the tree the recursion relations preform an 
averaging over the contributions of the different incoming branches, a 
process which washes out any inhomogeneities of finite extent within a few 
iterations. 

For  ease of reference we will call the impurity pair consisting of the 
two "surface" sites tangential and any other pair radial In Fig. 9 we show 
the average probabilities of a few relevant impurity configurations as a 

0,5 - 0.5" 
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0.1 
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T 0.4- 

P 

0 . 3 -  
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0 0.5 0.6 . O~ 0.8 0,4 0,5 0.6 0 7  Q8 

T > T ) 

(b) 

V 

Fig. 9. The average probabilities _P for various impurity configurations on the elementary 
triangle on a constant-chemical-potential (# = 1) cut in the phase diagram that crosses the 
paramagnetic to incommensurate I phase boundary. 
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function of temperature along a line of constant chemical potential # = 1, 
chosen to intersect the phase I somewhere in the middle. We do not show 
the average probability of full occupation of the triangle, since this turned 
out to be negligible in the regime considered. The most marked phenomenon 
we observe in the I phase is the rapid increase of tangential pairs coupled 
to a decrease of radial pairs. The low probability of radial pairs also 
implies the low probability of wedge-shaped triplets obtained by combining 
a radial and a tangential pair on two successive triangles. We thus infer 
that the probability of the tangential pairs is a good measure for the 
probability of isolated pairs. The picture of the I phase that emerges is thus 
one of a mixture of isolated tangential pairs and singlets. On crossing the 
paramagnetic to incommensurate boundary, we have a simultaneous 
increase of the number of tangential pairs coupled to a suppression of the 
wedge triplets. Ideally one should consider the probability of a much larger 
cluster in order to obtain the isolated pair probabilities directly. We 
nevertheless believe that the information obtained through our method 
contains strong indications of a pairing phenomenon occurring in the 
incommensurate I phase. 

Finally we turn to the question of the dependence of the observed 
phases on the two parameters of our model: 7 and p. We have observed 
that for all values of ~ > 1 and p > 0 we have considered, the topology of 
the phase diagram in the accessible regime of temperatures remains the 
same. Of course the locations of the phase boundaries depend on the actual 

(3=3 

l O  

T O.S- 

T~ ~ 15 
Q6 

0,4 
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Fig. 10. The temperature T* of the P I M I' multicritical point in the phase diagram as a 
function of the parameter p measuring the strength of the interimpurity repulsion for various 
values of the parameter ~ measuring the relative strength of the undecorated antiferromagnetic 
interaction with respect to the decorated ferromagnetic interaction. 

822/65/3-4-2 
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values of the parameters. As a crude measure of the influence of the 
parameters, we plot in Fig. 10 the value of the temperature associated with 
the P- I -M-I '  multicritical point in the phase diagram (see Fig. 4) as a 
function of p for various values of e. There is no evidence for a critical 
lower bound on p below which the new spatially varying phases I, M, and 
I' do not appear at sufficiently low temperature. 

5. C O N C L U S I O N S  

In this paper we have studied what is arguably the simplest model 
describing the effects of competing magnetic ordering due to interacting 
impurities. The interplay between the competing magnetic interactions 
which energetically favor the presence of impurities and the repulsive 
impurity-impurity interaction which disfavors their clustering introduces a 
measure of frustration into the system, which manifests itself in the 
appearance of modulated and incommensurate phases. Although the term 
frustration has come to be associated solely with the plaquette frustration 
typical of spin glasses, (17) we feel that this term is appropriate for every 
model in which there is no configuration of the microscopic variables that 
simultaneously satisfies, i.e., minimizes, all the interactions in the system 
individually, the plaquette frustrated systems being a special case of this 
type of model. This same feature is also present in our model, although 
caused by two different mechanisms, one indirect and one direct, the 
relative importance of which depends on the concentration of impurities. 
The indirect mechanism is due to the fixed spins on the boundary of the 
tree that preclude global rearrangements of the spins to accommodate 
the change of sign of even a single bond in the system. It is this influence 
of the boundary that causes the Bethe lattice, although not possessing 
closed loops, to admit even a spin-glass phase in the quenched _+ J model, 
as was discussed by Chayes e t  al. (~8) The direct mechanism arises from 
the fact that for all impurity concentrations ~> 1/3 there are by necessity 
dissatisfied impurity-impurity bonds. That these mechanisms lead to 
incommensurate phases in the range of concentrations roughly between 
fi= 1/3 and fi=2/3 is probably due to the fact that in this regime the 
magnetic ordering that effectively homogenizes the system cannot operate 
because neither the antiferro- nor ferromagnetic bonds dominate, so that 
the configuration of the impurities becomes the prime determinant of the 
properties of the phases. Since for a generic value of the average concentra- 
tion a regular arrangement of impurities would presummably require a 
large period to be realized, the intermediate solution of an incommensurate 
phase that locally resembles a modulated phase with a period of a few 
lattice constants but is globally adapted to yield the specified overall 
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concentration seems reasonable if only from an entropic point of view. 
The overall structure of the phase diagram, however, remains simple as 
compared to that found in the more "hard-wired" models frustrated in the 
sense outlined above, such as the ANNNI model, which have fixed bonds 
that enforce the nonexistence of lowest energy state that satisfies all bonds 
simultaneously. This difference is evidently due to the fact that in our case 
the impurities, which are the carriers of the frustration, are allowed to 
equilibrate with the host system, resulting in a marked softening of all 
effects. 

The most intriguing aspect of our model is the evidence for the 
appearance of impurity pairing as found in the incommensurate I phase. In 
our formulation the origin for this effect lies in the presence of the repulsive 
interimpurity interaction. This is of course not the only mechanism one 
could propose to obtain such an effect. Pareskevaidis and Papatrian- 
tafillou (19) have recently studied the influence of magnetic fields on the 
noninteracting impurity version of the model presented here. They found 
that at low temperatures the magnetic fields also induce impurity clustering. 
Nevertheless, it is clear that in the real doped systems, such as those 
considered in high-To research, the Coulomb repulsion between the 
charged impurities should play a nonnegligible role. Anyway, in order 
to understand the type of magnetic phase diagram of superconductors 
presented in ref. 2, a new mechanism seems indispensable. Models based 
solely on the presence of annealed ferromagnetic bond impurities (5'6) are 
able to describe the disappearance of the antiferromagnetic phase with 
increasing doping, but this is just one aspect of the phase diagram. A 
spin-glass phase at higher impurity concentrations could be obtained by 
introducing a pinning mechanism that effectively quenches the impurities, 
but this is not a good candidate for the superconducting phase. We hope 
that our model, which of course does not propose a solution for the 
problem of high-T C superconductivity, nevertheless, by demonstrating the 
possibility of new types of a phases in systems of interacting magnetic bond 
impurities, will stimulate possible new point of view in this matter. 

An important question is, of course, whether any of the behavior 
which our model displays on the Bethe lattice will survive on, say, the 
two-dimensional square lattice, being the geometry most relevant to the 
description of basal-plane CuO superconductors. While this is a difficult 
question to answer in general and, given the state of the art as far as theory 
is concerned, will probably require large-scale simulation, a few remarks 
can be made. First of all the model without repulsion between the impurities 
can be exactly solved on the square lattice using the Syozi bond decoration 
transformation, which maps it onto an ordinary Ising model, (4) and its 
phase diagram does not differ from that on the Bethe lattice. (16~ Second, the 
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mechanisms which we identified as causing the nontrivial behavior in the 
interacting case--the opposing tendencies of clustering due to the magnetic 
interactions and the counteracting interimpurity repulsions--remain 
operative on the regular lattice, although one will have to take into 
account geometric features of the lattice, i.e., a more realistic form of the 
interimpurity repulsions, as proposed, for instance, in ref. 7. An important 
ingredient seems to be the possibility of realizing a modulated phase of 
isolated pairs analogous to the M phase found on the Bethe lattice, since 
it is the short-range order of this phase that dominates the incommensurate 
phases I and I'. Candidates for such phases are easily constructed, and 
should be feasible low-energy states for suitable choices of the interaction 
parameters. 

Finally we would like to remark that the analysis of our model as 
presented in this paper is not yet exhaustive. The low-temperature behavior 
certainly needs more study. In fact, we have seen evidence for more 
complex behavior, e.g., larger cycle modulated phases and even true 
chaotic phases. These states, however, occur in the region of the phase 
diagram where we encountered the numerical difficulties mentioned in 
Section 4, so we have not been able to study them systematically. Here one 
should either develop a different approach tO the problem that bypasses the 
difficulties mentioned above, or turn to an even more drastic approximation 
like the mean-field limit obtained by studying the model on an infinitely 
coordinated tree with infinitely weak couplings, (12) which will reduce the 
number of independent variables from three to two. 

A P P E N D I X A .  T H E  R E C U R S I O N  E Q U A T I O N S  

In this appendix we give the explicit formulas for the recurrence 
relations (10). They are obtained by inserting the parametrization (9) of 
the branch partition functions 9 and expanding most of the exponentials 
using the identity exp(aC)= cosh(C)+ o-sinh(C) for [a] = 1. First we 
introduce the useful notation h=tanh(2K)  for a frequently occurring 
expression. Next we use the symmetric polynomials 

Po = 1 -t- x rx"  

P l = x' + x"  

P2 : Y' + Y" + x' z" + x" z' 
(Al) 

P3 = x '  y"  + x"  y '  + z '  + z" 

P4 = Y' Y" + z'  z" 

P5 = y ' z "  + y " z '  
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and the parameters 

ao= 1 -  tRt~R b o= 1 -  t 3 

al=t2A_l(1--tRt2R) b l = t l ( 1 - - t  3) 
2 a 2 = tRt3R-- t3R b2 = t R -  t R 

a3 = t2A_  , ( tR t3 R  - -  t3R) b3 = t l ( t ~  - t ~ )  

a4 = d .  - t .  b4 = t ~ -  tR 

a~ = t~,, l ( t ~ R -  tR) b~ = t , ( t ~ -  tR) 

from which we form the terms 

q+,+ =aoPo +alP l  +a2P2 +a3P3 +a4P4 + asp5 

q+, = b o P o - b l P l + b 2 P 2 - b 3 p 3 + b 4 P 4 - b s p 5  

q , + = a o P o - a l P l + a 2 p 2 - a 3 p 3 + a 4 P 4 - a s p 5  

q , =boPo+blp l+b2P2+b3P3+b4P4+bsp5  

Finally, using the abbreviation E =  exp[-A + M -  2R)K], we get 

J(((x', y', z'), (x", y", z " ) ) -  E(q+'+ - q  +)+ 
E(q+,+ +q_ +)+ 

Y((x', y', z'), (x', y", z"))= E(q+'+ + q - ' + ) -  
E( q +, + -~q-- + ) ~ 

Z((x', y', z'), (x", y", z ' ) )= E(q+'+ - q - ' + ) -  
E(q+,+ ~ q - - + ) +  

E-l(q+,  - -q_,_)  

E-l(q+, +q_ ,_ )  

E-l (q+,_ +q , - )  
E - l ( q + _ + q _ ,  ) 

E l ( q + , _ _ q _ _ )  
E l ( q + _ + q  ,_) 

(A2) 

(A3) 

(A4) 

A P P E N D I X  B. T H E  T R I A N G L E  C L U S T E R  P R O B A B I L I T Y  

The algebra needed for obtaining the probability of the states on the 
elementary triangle is simplified by introducing the following set of basis 
functions of the triangle cluster configuration space: 

zJi.jlr l ,  = ~tri'rj'rk'rl~l~2~3, i, j, k, l = 0, 1 (m 

which allows us to expand 

1 1 

P(~, "cl, z2, r 3 ) -  16eo;ooo ~ Ci;jkl Ai;j~t (B2) 
i , j ,k , l=O 
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Note that the product of two such basis functions is given by the simple 
rule 

Ai;j~t Ai,;j,k,r = Aim c;i# j'k # k'l# r (B3) 

where the # denotes the logical exclusive disjunction (XOR). The triple 
product of ~'s appearing in (11) is expanded as 

1 
~l(a, rl) ~2(a, z2) ~3(a, r3)=qlq2q3 Z Pi;jk, Ai;JkZ (B4) 

i,j,k,l=O 

where the coefficients Pi;j~t are the following polynomials in the variables 
(x., y., z.).=1,2,3: 

Po;ooo = 1 + x l x 2  +XlX3 +x2x3 

Pl;ooo -= x l  4- x 2 + X 3 4- X l X 2 X  3 

Po;loo = yl(1 + x2x3) + (x2 + x3)zl 

Pl;100= ( x 2 + x 3 ) Y l +  (1 +XzX3)Zl 
(Bs) 

Po;l~O = Yl Y2 + zlz2 + x3(y~z2 + Y2zl) 

Pl;~10 = Yl z2 + y2zl + x3(yl  Y2 + ZlZ2) 

P0;111 = Yl Y2 Y3 + Y l Z 2 Z 3  4- Y 3 Z I Z 2  4- Y2Z3Za 

Pl;1H = Y l  Y223  4- Y3 Y l Z 2  4- Y2 Y 3 Z t  + zl zzz3 

with the remaining terms obtained by cyclic permutations of the labels 
(1, 2, 3). In the same manner the exponential factor in (11) describing the 
intratriangle impurity-impurity interactions can be expanded as 

expl- - K R ( v l z 2  + zlr3 + 272c3 4- 2rl + 2~2 + 2"r3) ] 

= F[Do Ao;ooo + Dl(Ao;mo 4- Ao;olo 4- Ao;ool ) 

4- O2(zlO;ll 0 4- zJO;lO 1 4- Zio;ol I ) 4- O3z~O;ll 1 ] (B6) 

where the overall factor F, which will be absorbed in the normalization, does 
not concern us here and the coefficients Dj are given by (see Appendix A 
for the definition of t~) 

Do= 1--t~+3tR(tR-- 1)t~R 

D I =  - 1 - ( 1 -  t3)t2R+ tR(tR-- 1)t3R+2tR(tR-- 1)t2R] 
(B7) 

D2=(1 - -  3 2 tR)t2n + tn(tR-- 1) + 2tR(tR-- 1)t22R 

D 3 = - [ ( 1  -- t3)t3 R + 3tR(tR'-- 1)t2R] 
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These ingredients allows us to construct the required expansion coefficients 
of the triangle probability 

Ci;ooo = Do Pi;ooo + Dl(pi;loo + Pi;olo + Pi,ool) 

+ D2(Pi;llO + Pi;101 + Pi ;Ol l )  + D3 Pi;111 

ci;loo = Do Pi;loo + Dl(Pi;ooo + Pi;11o + Pi;lol) 

+ D2(Pi;olo + Pi;ool + Pi;11~) + D3 Pi;oll 
(B8) 

Ci;llO = Do Pi;IlO + D I(Pi;olo + Pi;lOO + Pi;111) 

+ Dz(Pi;ooo + Pi;Oll -t- P i ; l o l )  + D3 Pi;oo~ 

ci;iH = Dopi;111 + Dl(pi;oll + Pi;lOl + Pi;~lo) 

+ D2(Pi;ool + Pi;olo + Pi;lOO) + D3 Pi;ooo 

As before, the remaining coefficients can be obtained by suitably permuting 
the labels ( jkl) .  Several quantities of interest can be immediately read off 
from these results; the magnetization of the spin in the center of the 
triangle is given by 

m = <a> = C,;ooo (B9) 
CO;O00 

and the impurity concentration on any of the three vertices of the triangle 
is given by 

1 1 (c~176176 + 1) etc. 
n l = 2 ( < z l > + l ) = 5 \ C o ; o o o - / '  

(BIO) 
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